69 research outputs found

    Anatomical Data Augmentation For CNN based Pixel-wise Classification

    Full text link
    In this work we propose a method for anatomical data augmentation that is based on using slices of computed tomography (CT) examinations that are adjacent to labeled slices as another resource of labeled data for training the network. The extended labeled data is used to train a U-net network for a pixel-wise classification into different hepatic lesions and normal liver tissues. Our dataset contains CT examinations from 140 patients with 333 CT images annotated by an expert radiologist. We tested our approach and compared it to the conventional training process. Results indicate superiority of our method. Using the anatomical data augmentation we achieved an improvement of 3% in the success rate, 5% in the classification accuracy, and 4% in Dice.Comment: To be presented at IEEE ISBI 201

    Compact Network Training for Person ReID

    Full text link
    The task of person re-identification (ReID) has attracted growing attention in recent years leading to improved performance, albeit with little focus on real-world applications. Most SotA methods are based on heavy pre-trained models, e.g. ResNet50 (~25M parameters), which makes them less practical and more tedious to explore architecture modifications. In this study, we focus on a small-sized randomly initialized model that enables us to easily introduce architecture and training modifications suitable for person ReID. The outcomes of our study are a compact network and a fitting training regime. We show the robustness of the network by outperforming the SotA on both Market1501 and DukeMTMC. Furthermore, we show the representation power of our ReID network via SotA results on a different task of multi-object tracking

    The Liver Tumor Segmentation Benchmark (LiTS)

    Get PDF
    In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094.Bjoern Menze is supported through the DFG funding (SFB 824, subproject B12) and a Helmut-Horten-Professorship for Biomedical Informatics by the Helmut-Horten-Foundation. Florian Kofler is Supported by Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate School of Science and Engineering (IGSSE), GSC 81. An Tang was supported by the Fonds de recherche du Québec en Santé and Fondation de l’association des radiologistes du Québec (FRQS- ARQ 34939 Clinical Research Scholarship – Junior 2 Salary Award). Hongwei Bran Li is supported by Forschungskredit (Grant NO. FK-21- 125) from University of Zurich.Peer ReviewedArticle signat per 109 autors/es: Patrick Bilic 1,a,b, Patrick Christ 1,a,b, Hongwei Bran Li 1,2,∗,b, Eugene Vorontsov 3,a,b, Avi Ben-Cohen 5,a, Georgios Kaissis 10,12,15,a, Adi Szeskin 18,a, Colin Jacobs 4,a, Gabriel Efrain Humpire Mamani 4,a, Gabriel Chartrand 26,a, Fabian Lohöfer 12,a, Julian Walter Holch 29,30,69,a, Wieland Sommer 32,a, Felix Hofmann 31,32,a, Alexandre Hostettler 36,a, Naama Lev-Cohain 38,a, Michal Drozdzal 34,a, Michal Marianne Amitai 35,a, Refael Vivanti 37,a, Jacob Sosna 38,a, Ivan Ezhov 1, Anjany Sekuboyina 1,2, Fernando Navarro 1,76,78, Florian Kofler 1,13,57,78, Johannes C. Paetzold 15,16, Suprosanna Shit 1, Xiaobin Hu 1, Jana Lipková 17, Markus Rempfler 1, Marie Piraud 57,1, Jan Kirschke 13, Benedikt Wiestler 13, Zhiheng Zhang 14, Christian Hülsemeyer 1, Marcel Beetz 1, Florian Ettlinger 1, Michela Antonelli 9, Woong Bae 73, Míriam Bellver 43, Lei Bi 61, Hao Chen 39, Grzegorz Chlebus 62,64, Erik B. Dam 72, Qi Dou 41, Chi-Wing Fu 41, Bogdan Georgescu 60, Xavier Giró-i-Nieto 45, Felix Gruen 28, Xu Han 77, Pheng-Ann Heng 41, Jürgen Hesser 48,49,50, Jan Hendrik Moltz 62, Christian Igel 72, Fabian Isensee 69,70, Paul Jäger 69,70, Fucang Jia 75, Krishna Chaitanya Kaluva 21, Mahendra Khened 21, Ildoo Kim 73, Jae-Hun Kim 53, Sungwoong Kim 73, Simon Kohl 69, Tomasz Konopczynski 49, Avinash Kori 21, Ganapathy Krishnamurthi 21, Fan Li 22, Hongchao Li 11, Junbo Li 8, Xiaomeng Li 40, John Lowengrub 66,67,68, Jun Ma 54, Klaus Maier-Hein 69,70,7, Kevis-Kokitsi Maninis 44, Hans Meine 62,65, Dorit Merhof 74, Akshay Pai 72, Mathias Perslev 72, Jens Petersen 69, Jordi Pont-Tuset 44, Jin Qi 56, Xiaojuan Qi 40, Oliver Rippel 74, Karsten Roth 47, Ignacio Sarasua 51,12, Andrea Schenk 62,63, Zengming Shen 59,60, Jordi Torres 46,43, Christian Wachinger 51,12,1, Chunliang Wang 42, Leon Weninger 74, Jianrong Wu 25, Daguang Xu 71, Xiaoping Yang 55, Simon Chun-Ho Yu 58, Yading Yuan 52, Miao Yue 20, Liping Zhang 58, Jorge Cardoso 9, Spyridon Bakas 19,23,24, Rickmer Braren 6,12,30,a, Volker Heinemann 33,a, Christopher Pal 3,a, An Tang 27,a, Samuel Kadoury 3,a, Luc Soler 36,a, Bram van Ginneken 4,a, Hayit Greenspan 5,a, Leo Joskowicz 18,a, Bjoern Menze 1,2,a // 1 Department of Informatics, Technical University of Munich, Germany; 2 Department of Quantitative Biomedicine, University of Zurich, Switzerland; 3 Ecole Polytechnique de Montréal, Canada; 4 Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands; 5 Department of Biomedical Engineering, Tel-Aviv University, Israel; 6 German Cancer Consortium (DKTK), Germany; 7 Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; 8 Philips Research China, Philips China Innovation Campus, Shanghai, China; 9 School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK; 10 Institute for AI in Medicine, Technical University of Munich, Germany; 11 Department of Computer Science, Guangdong University of Foreign Studies, China; 12 Institute for diagnostic and interventional radiology, Klinikum rechts der Isar, Technical University of Munich, Germany; 13 Institute for diagnostic and interventional neuroradiology, Klinikum rechts der Isar,Technical University of Munich, Germany; 14 Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China; 15 Department of Computing, Imperial College London, London, United Kingdom; 16 Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany; 17 Brigham and Women’s Hospital, Harvard Medical School, USA; 18 School of Computer Science and Engineering, the Hebrew University of Jerusalem, Israel; 19 Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, PA, USA; 20 CGG Services (Singapore) Pte. Ltd., Singapore; 21 Medical Imaging and Reconstruction Lab, Department of Engineering Design, Indian Institute of Technology Madras, India; 22 Sensetime, Shanghai, China; 23 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, USA; 24 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA; 25 Tencent Healthcare (Shenzhen) Co., Ltd, China; 26 The University of Montréal Hospital Research Centre (CRCHUM) Montréal, Québec, Canada; 27 Department of Radiology, Radiation Oncology and Nuclear Medicine, University of Montréal, Canada; 28 Institute of Control Engineering, Technische Universität Braunschweig, Germany; 29 Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; 30 Comprehensive Cancer Center Munich, Munich, Germany; 31 Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Germany; 32 Department of Radiology, University Hospital, LMU Munich, Germany; 33 Department of Hematology/Oncology & Comprehensive Cancer Center Munich, LMU Klinikum Munich, Germany; 34 Polytechnique Montréal, Mila, QC, Canada; 35 Department of Diagnostic Radiology, Sheba Medical Center, Tel Aviv university, Israel; 36 Department of Surgical Data Science, Institut de Recherche contre les Cancers de l’Appareil Digestif (IRCAD), France; 37 Rafael Advanced Defense System, Israel; 38 Department of Radiology, Hadassah University Medical Center, Jerusalem, Israel; 39 Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, China; 40 Department of Electrical and Electronic Engineering, The University of Hong Kong, China; 41 Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China; 42 Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Sweden; 43 Barcelona Supercomputing Center, Barcelona, Spain; 44 Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland; 45 Signal Theory and Communications Department, Universitat Politecnica de Catalunya, Catalonia, Spain; 46 Universitat Politecnica de Catalunya, Catalonia, Spain; 47 University of Tuebingen, Germany; 48 Mannheim Institute for Intelligent Systems in Medicine, department of Medicine Mannheim, Heidelberg University, Germany; 49 Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany; 50 Central Institute for Computer Engineering (ZITI), Heidelberg University, Germany; 51 Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-Universität, Munich, Germany; 52 Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, NY, USA; 53 Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, South Korea; 54 Department of Mathematics, Nanjing University of Science and Technology, China; 55 Department of Mathematics, Nanjing University, China; 56 School of Information and Communication Engineering, University of Electronic Science and Technology of China, China; 57 Helmholtz AI, Helmholtz Zentrum München, Neuherberg, Germany; 58 Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong, China; 59 Beckman Institute, University of Illinois at Urbana-Champaign, USA; 60 Siemens Healthineers, USA; 61 School of Computer Science, the University of Sydney, Australia; 62 Fraunhofer MEVIS, Bremen, Germany; 63 Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany; 64 Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands; 65 Medical Image Computing Group, FB3, University of Bremen, Germany; 66 Departments of Mathematics, Biomedical Engineering, University of California, Irvine, USA; 67 Center for Complex Biological Systems, University of California, Irvine, USA; 68 Chao Family Comprehensive Cancer Center, University of California, Irvine, USA; 69 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany; 70 Helmholtz Imaging, Germany; 71 NVIDIA, Santa Clara, CA, USA; 72 Department of Computer Science, University of Copenhagen, Denmark; 73 Kakao Brain, Republic of Korea; 74 Institute of Imaging & Computer Vision, RWTH Aachen University, Germany; 75 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; 76 Department of Radiation Oncology and Radiotherapy, Klinikum rechts der Isar, Technical University of Munich, Germany; 77 Department of computer science, UNC Chapel Hill, USA; 78 TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, GermanyPostprint (published version

    Hubble PanCET: an isothermal day-side atmosphere for the bloated gas-giant HAT-P-32Ab

    Get PDF
    We present a thermal emission spectrum of the bloated hot Jupiter HAT-P-32Ab from a single eclipse observation made in spatial scan mode with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST). The spectrum covers the wavelength regime from 1.123 to 1.644 μm which is binned into 14 eclipse depths measured to an averaged precision of 104 parts-per million. The spectrum is unaffected by a dilution from the close M-dwarf companion HAT-P-32B, which was fully resolved. We complemented our spectrum with literature results and performed a comparative forward and retrieval analysis with the 1D radiative-convective ATMO model. Assuming solar abundance of the planet atmosphere, we find that the measured spectrum can best be explained by the spectrum of a blackbody isothermal atmosphere with Tp = 1995 ± 17 K, but can equally well be described by a spectrum with modest thermal inversion. The retrieved spectrum suggests emission from VO at the WFC3 wavelengths and no evidence of the 1.4 μm water feature. The emission models with temperature profiles decreasing with height are rejected at a high confidence. An isothermal or inverted spectrum can imply a clear atmosphere with an absorber, a dusty cloud deck or a combination of both. We find that the planet can have continuum of values for the albedo and recirculation, ranging from high albedo and poor recirculation to low albedo and efficient recirculation. Optical spectroscopy of the planet\u27s day-side or thermal emission phase curves can potentially resolve the current albedo with recirculation degeneracy

    The Liver Tumor Segmentation Benchmark (LiTS)

    Full text link
    In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094

    Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma

    Get PDF
    Multiple myeloma, a plasma cell malignancy, is the second most common blood cancer. Despite extensive research, disease heterogeneity is poorly characterized, hampering efforts for early diagnosis and improved treatments. Here, we apply single cell RNA sequencing to study the heterogeneity of 40 individuals along the multiple myeloma progression spectrum, including 11 healthy controls, demonstrating high interindividual variability that can be explained by expression of known multiple myeloma drivers and additional putative factors. We identify extensive subclonal structures for 10 of 29 individuals with multiple myeloma. In asymptomatic individuals with early disease and in those with minimal residual disease post-treatment, we detect rare tumor plasma cells with molecular characteristics similar to those of active myeloma, with possible implications for personalized therapies. Single cell analysis of rare circulating tumor cells allows for accurate liquid biopsy and detection of malignant plasma cells, which reflect bone marrow disease. Our work establishes single cell RNA sequencing for dissecting blood malignancies and devising detailed molecular characterization of tumor cells in symptomatic and asymptomatic patients
    • …
    corecore